

TCL New Agents Swami iyer

MD Anderson Cancer Center

Florence, March 20-21, 2025

Hotel Brunelleschi

President: P.L. Zinzani

Florence, March 20-21, 2025

Disclosures

9th POSTGRADUATE

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
CRISPR	✓					✓	
MERCK	✓						
SEAGEN/PFIZER	✓					✓	
YINGLI	✓					✓	
ACROTECH	✓					✓	
INNATE	✓						
TRILLIUM/Pfizer	✓						
ASTRA ZENECA	✓						
ONO	✓						
LEGEND	✓						
SALARIUS			✓				
SECURA BIO						✓	
ELECTRA						✓	
DREN-BIO	✓					✓	
IMPaRT.AI				✓			Co-Founder
Sanofi			✓				

Classification of Peripheral T-cell Lymphoma (PTCL)

Making Cancer History®

PTCL is a heterogeneous group of aggressive mature T-/NK-cell lymphomas

PTCL does not refer to anatomic sites, but rather to the involvement of more mature (post-thymic) T cells vs pre-thymic or immature T cells¹

PTCL Prognostic Characteristics

Making Cancer History®

Major subtype of T-cell Lymphoma ¹⁾	Number			
(WHO classification 2008)	US	EU	Japan	5yr OS ^{4) 5)} (%)
 PTCL (Peripheral T-cell lymphoma) PTCL-NOS (PTCL not otherwise specified) AITL (Angioimmunoblastic T-cell lymphoma) ALK (+) ALCL (Anaplastic large-cell lymphoma) ALK (-) ALCL 	3,683	3,033	2,340	32 32 70 49
CTCL (Cutaneous T-cell lymphoma) MF (Mycosis fungoides) SS (Sezary syndrome)	3,466	1,798	278 ³⁾	18~37*

n.d.: No data * Advance stage

Poor survival due to no standard therapy

WHO classification of haematopoietic and Lymphoid Tissues. 2008.
 CancerMPact, Oct, 3, 2019.

3) Hamada TA, et al, Nationwide survey on cutaneous lymphomas. 2008

4) International T-cell Lymphoma project, J Clin Oncol.2008.

5) Agar NS, et al, J Clin Oncol. 2010.

6) Lone W, et al, Current Hematologic Malignancy Reports. 2018.

Progression Free Survival: Relapsed/Refractory PTCL

Making Cancer History®

Mak V et al. JCO 2013;31:1970-1976, O' Connor OA, et al. *J Clin Oncol.* 2011;29:1182-1189,Coiffier B, et al. *J Clin Oncol.* 2012;30:631-636, O'Connor OA et al ASCO 2013, Pro B, et al. J Clin Oncol. 2012;30:2190-2196, Horwitz S M et al. Blood 2014;123:3095-3100

CD30 as the predictive marker in TCL

NexGen CD30: ADC and DuoBody

Making Cancer History®

SGN-35 T: Tripeptide linker

SGN-35C

Novel camptothecin payload

GEN3017 (DuoBody®-CD3xCD30) Mechanism of Action

•Bispecific Fc-silenced IgG1antibody obtained by controlled Fabarm exchange of a humanized CD3e and a human CD30 monoclonal antibody

•Leads to crosslinking of T cells with CD30-expressing (CD30+) tumor cells resulting in T-cell–mediated killing of the malignant cells

ALCL, anaplastic large-cell lymphoma; Fc, fragment crystallizable; HL, Hodgkins lymphoma; IgG1, immunoglobulin G. Oostindie, S, et al. Poster presented at the 64th ASH Annual Meeting, December 10-13, 2022.

Pathology- basis for diagnosis, prognosis in PTCL

- Approximately 30-50% of PTCL cases are incorrectly diagnosed with conventional diagnostic techniques¹
- Immunophenotypic analysis in conjunction with cellular morphology, analysis of lymph node architecture, and molecular genetic assays

- 1. Armitage J, et al. *J Clin Oncol*. 2008;26:4124–4130.
- . Warnke RA, et al. Am J Clin Pathol. 2007;127:511–527
- 3. Swerdlow SH, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 2008
- Kocjan G. J Clin Pathol. 2005;58:561–567.

COO based Diagnosis in PTCL

Making Cancer History®

Vega F, EXABS-TCL-052.2020

Making Cancer History®

• HOW CAN WE HARNESS THE ADVANCES IN BIOLOGY?

Emerging themes in T cell Lymphomas

- Epigenetic targeting of Tfh
- Targeting dysregulated pathways: JAK/STAT, PI3K, EZH1/2, ITK
- Targeting cytotoxic, gamma-delta and NK subtypes
- Immunotherapy: checkpoint blockade and cellular
- Pan SIRP inhibitor for LA-HLH

Emerging themes in T cell Lymphomas

- Epigenetic targeting of Tfh
- Targeting dysregulated pathways: JAK/STAT, PI3K, EZH1/2
- Targeting cytotoxic, gamma-delta and NK subtypes
- Immunotherapy: checkpoint blockade and cellular

Nodal Lymphomas with TFH Phenotype: Role of Epigenetic Modifiers

Making Cancer History®

1. Pro. Hematol Oncol. 2017;35:914. 2. Lemonnier. Blood. 2018;132:2305.

ORACLE: Phase III study baseline characteristics

	Azacitidine CC486	Investigator treatment choice	romidepsin	Bendamustine	gemcitabine
Ν	42	44	4	16	24
median age (IQR)	70.5 (65-77)	68 (58.5-73.5)	68.5 (62.5-71.5)	63.5 (53-68)	72 (64-78)
Sex male	22 (52%)	28 (64%)	3 (75%)	10 (62.5%)	15 (62.5%)
ECOG 2-3	11 (26%)	9 (20%)	0 (0%)	4 (25%)	5 (20%)
Bone marrow involvement	12/37 (32%)	17/40 (42,5%)	1/4 (25%)	8/16 (50%)	8/20 (40%)
Associated MDS/CMML	0	1 (2%)	0	0	1 (4%)
IPI 4-5	13/42 (31%)	14/42 (33%)	0/4	5/15 (33%)	9/23 (39%)
Previous line number					
1-2 vs ≥3	34 (81%) vs 8 (19%)	37 (84%) vs 7(16%)	4 (100%) vs 0 (0%)	14 (88%) vs 2 (12%)	19 (79%) vs 5 (21%)
1	24 (57%)	14 (32%)	4 (100%)	3 (19%)	7 (29%)
2	10 (24%)	23 (52%)	0 (0%)	11 (69%)	12 (50%)
refractory patients	20 (48%)	28 (64%)	1 (25%)	13 (80%)	14 (58%)

ORACLE – did not meet primary endpoint PFS but OS

Making Cancer History®

median	CC-486 Ir 18.4 months	vestigator's choice 10.3 months
95% CI	12.9 – 31.5 months	4.2 – 13.5 months
	P=0.016	6*
		* Descriptive p value

PFS* from randomization - FDA C2 censoring - ITT Set

	CC-486	Investigator's choice
median	5.6 months	2.8 months
95% CI	2.7 - 8.1 months	1.9 - 4.8 months
	P=0.0421	>p=0.025

Dupuis J et al, ASH 2022 #959

Histone modifier gene mutations in peripheral T-cell lymphoma, not otherwise specified.

Emerging themes in T cell Lymphomas

Making Cancer History®

• Targeting dysregulated pathways: JAK/STAT, PI3K, EZH1/2, ITK

Golidocitinib: Study Design

Making Cancer History®

Key eligibility criteria

Patients with r/r PTCLs

- PTCLs diagnosed locally
- Had relapsed from or been refractory/intolerant to prior systemic therapy¹
- Measurable disease
- Age \geq 18 y (for Korean \geq 19 y)
- ECOG PS ≤ 2
- Adequate bone marrow reserve and organ/system functions

Golidocitinib 150 mg QD²

1 cycle = 21 days

Tumor assessment

Day 1 of Cycle 3, and then every 3 cycles until disease progression or withdrawal from the study

Primary endpoint: IRC assessed ORR based on CT images per Lugano 2014 criteria

Secondary endpoints: other efficacy endpoints, e.g., IRC assessed CRR, DoR PFS and TTR, investigator assessed ORR, CRR, DoR, PFS, TTR and safety

¹ Eligible patients must have relapsed from or been refractory/intolerant to prior systemic therapy(ies) for PTCLs and now require further treatment. In patients with CD30 positive ALCL, the prior systemic treatment should include CD30-targeted therapy (brentuximab vedotin).

^{2.} Golidocitinib is administered orally at the recommended phase 2 dose (150 mg QD) on a 21-day dosing cycle until disease progression, intolerance or other discontinuation criteria are met.

Abbreviations: ALCL, anaplastic large-cell lymphoma; CD, cluster of differentiation; CT, computed tomography; CRR, complete response rate; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group Performance Status; IRC, independent review committee; ORR, objective response rate; PFS, progression free survival; PTCL, peripheral T cell lymphoma; QD, once daily; r/r, relapsed/refractory; TTR, time to response.

Demographics and Baseline Characteristics

Making Cancer History®

Demographics & Characteristics	n = 104	Demographics & Characteristics	n = 104	
Median age, y (range)	58 (20 - 78)	Histology subtypes by central review, n (%)		
Female/Male, n (%)	37 (35.6)/67 (64.4)			
ECOG PS, n (%)		PTCL, NOS	51 (49.0)	
0/≥1	46 (44.2)/58 (55.8)	AITL	16 (15.4)	
Median lines of prior systemic therapies (range)	2 (1 - 3)	ALCL	11 (10.6)	
Types of prior systemic therapies, n (%)		NK/TCL	4 (3.8)	
Chemotherapy	104 (100.0)	Othere*	0 (9 7)	
Pralatrexate	1 (1.0)	Others	9 (0.7)	
Mitoxantrone liposome	3 (2.9)	Central confirmed non-PTCL	4 (3.8)	
HDAC inhibitor	50 (48.1)	I Inable to confirm	0 (8 7)	
Brentuximab vedotin	13 (12.5)		9 (0.7)	
ALK inhibitor	1 (1.0)	Data cut-off da	te: August 31, 2023	
Prior autologous HSCT, n (%)	2 (1.9)	• Between Feb 26, 2021 to Oct 12, 2022, a total of 104 subjects		
Bone marrow involvement at baseline, n (%)	20 (19.2)	r/r PTCLs were enrolled.		
LDH elevation at baseline, n (%)	52 (50.0)	 All subjects received at least one dose of golidocitin 	ib at 150 mg QD.	

Note: * 'Others' including 1 centrally diagnosed as T cell prolymphocytic leukemia and 8 centrally diagnosed as PTCLs with unconfirmable histology subtypes.

Abbreviations: AITL, angioimmunoblastic T cell lymphoma; ALCL, anaplastic large-cell lymphoma; ALK, anaplastic lymphoma kinase; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HDAC, histone deacetylase; HSCT, hematopoietic stem cell transplant; LDH, lactate dehydrogenase; NK/TCL, natural-killer/T cell lymphoma; PTCL, NOS, peripheral T cell lymphoma, not otherwise specified; r/r, relapsed/refractory; QD, once daily.

Tumor Response

Making Cancer History®

Turner Designed	n = 88			
Tumor Response	By IRC	By Investigator		
ORR, n (%)	39 (44.3)	35 (39.8)		
Overall response, n (%)				
Complete response	21 (23.9)	10 (11.4)		
Partial response	18 (20.5)	25 (28.4)		
Stable disease	17 (19.3)	15 (17.0)		
Progressive disease	20 (22.7)	26 (29.5)		
Not evaluable	12 (13.6)	12 (13.6)		

DOR-IRC Assessment

The following subjects were **not** included in the efficacy analysis set: 4 confirmed as non-PTCL by central pathology review, 9 not providing sufficient tumor tissue for central pathology confirmation, and 3 no baseline measurable lesions by IRC assessment.

Abbreviations: CR, complete response; IRC, independent review committee; ORR, objective response rate; PR, partial response; PTCL, peripheral T cell lymphoma.

Summary of Safety

Making Cancer History®

The most common (incidence > 10%) Grade 3+ TRAEs included platelet count decreased, white blood cell count decreased, neutrophil count decreased and lymphocyte count decreased.

Abbreviations: TRAE, treatment-related adverse event; TRSAE, treatment-related serious adverse event Note: Adverse events were coded using MedDRA version 25.1. Adverse event grades were evaluated based on NCI-CTCAE Version 5.0. TRAEs with incidence \geq 10% were presented in the figure.

PI3K dependent pathway inhibition-Clinical studies in TCL

This project is aimed at identifying mechanisms of response and resistance to PI3K inhibitors in TCL and at developing hypothesis-driven therapeutic combination with Bcl2 inhibition to enhance their responses.

- PI3K/AKT/mTOR pathway hyperactivated in many T-cell lymphomas.
- GATA3+ TCL (45%), a poor-risk subset show significant enrichment of PI3K-associated pathway gene expression.
- Two PI3K inhibitors-Linpersilib (δ) & Tenalisib (δ and γ) have shown encouraging activity in r/r TCL as a single agent and in combinations.

PI3K DRUG	Dose	% in Urine	% in Feces
Linperlisib	80 mg, po	58	34
Idelalisib	25 mg, po	14	78
Duvelisib	150 mg, po	14	79
Copanlisib	12 mg, iv	22	64
Umbralisib	800 mg, po	3	81

• There are three clinical studies completed with Linpersilib in r/r-PTCL.

Linperlisib Efficacy

Making Cancer History®

Response	n(%)
ORR, n(%)	42(48)
95% CI	(37, 59)
CR	26(30)
PR	16(18)
SD	18(21)
PD	21(24)
NE	7(8)
DCR, n(%)	60(68)
95% CI	(57, 78)

- FAS, n=88 patients
 - The study met the primary endpoint
 - ✓ CR 30%, PR 18%
- A disease control rate of 69% observed

* Five PD patients had new lesions appearing, even though target lesions met the response criteria

Best response AITL: ORR-65% and CR-48%

Phase II US & Europe: Efficacy Summary in Linperlisib

Making Cancer History®

	YY-20394-012 PTCL Phase 2 US & EU FAS N=35 ^b	YY-20394-012 CTCL Phase 2 US & EU FAS N=10	 Opened in August 2022 First trial to evaluate linperlisib-treated patients in the U.S. and E.U. Stage 1, interim analysis for safety, Stage 2, study completion N=36 pts
	PTCL	CTCL	
ORR	45.7 % (INV), N=16	40 % (INV), N=4	 r/r T-cell lymphomas having ≥1 prior therapy
	Lugano 2014	Olsen 2011	All PTCL subtypes enrolling, PTCL-NOS, AITL, ALCL, NKT, EATL, MEITL and Open to the second
CR	31.4 %	0 %	 There is a Central Lab confirmation of diagnosis in this study
PR	14.3 %	40 %	CTCL patients are enrolling
SD	5.7%	40 %	 Dose schedules for 28-day cycles
DCR	51.4%	70 %	80 mg QD (RP2D) to progression
DOR Rate, % (95% CI)			 80 mg QD for 4 cycles or until response, followed by 40 mg QD
3 Month 6 Month 9 Month	78.6(47.2,92.5) 47.1(16.6,73.0) 47.1(16.6,73.0)	33.3(0.9,77.4) 33.3(0.9,77.4) 33.3(0.9,77.4)	Primary endpoint is Overall Response Rate
PFS Rate, % (95% CI)			Principal Investigators: Dr. Swami Iver (Study
3 Month 6 Month	53.7(35.2,69.0)	85.7(33.4,97.9)	
9 Month	26.2(11.2,44.0)	14.3(0.7,46.5)	Chair), Dr.Pierluigi Zinzani, Dr.Ranjit Nair,

^a ≥6 months follow-up; INV: Investigator response assessment; IRC, Independent Review Committee

^b 2 unevaluable patients included: One patient had initial CR on PTCL but was diagnosed with newly developed DLBCL by biopsy after Cycle 3.

Dr.Neha Mehta-Shah

^c 12 month DOR rate (67.75%, 95%CI: 49.07%, 80.82%)

^d36 month OS rate (55.4%)

lyer S. ASH. 2024, NCT05274997.

Making Cancer History®

Any Grade TRAEs Preferred Term	(≥10%)
Any Grade mals, Freieneu lenn	n (%)
Neutropenia	58 (59)
Leukopenia	46 (47)
Thrombocytopenia	31 (32)
Anemia	24 (24)
Elevated ALT	23 (23)
Elevated AST	20 (20)
Pneumonia	20 (20)
Lymphocytopenia	17 (17)
Hypertriglyceridemia	15 (15)
Fever	15 (15)
Diarrhea	14 (14)
Elevated lipase	13 (13)
Hyperuricemia	13 (13)
Rash	13 (13)
Hypercholesterolemia	12 (12)
Hyponatremia	11 (11)
Elevated lactate dehydrogenase	10 (10)
Elevated creatinine	10 (10)

SAS = 98 patients

>Grade 3 TRAF Preferred Term	(≥5%)
2 Grade 5 mal, Freiened Term	n (%)
Neutropenia	31 (32)
Pneumonia	14 (14)
Leukopenia	10 (10)
Anemia	6 (6)
Thrombocytopenia	5 (5)
Upper respiratory tract infection	5 (5)
Lymphocytopenia	5 (5)

- TRAEs were observed in 94 pts (95.9%)
- The most frequent ≥Grade 3 TRAE were neutropenia, pneumonia and leukopenia;
- Immune-related ≥Grade 3 TRAEs as elevated ALT,AST, diarrhea, colitis, rash were observed at <5%;
- The most frequent drug-related SAE was pneumonia (11%);
- Twenty-two pts (22.4%) had dose reductions, and 9 pts (9.2%) discontinued from the study due to AEs.

Making Cancer History®

TEAE , All Grades	n (%)
All Grades TEAE occurring at ≥10%	43(95.6)
Rash maculo-papular	10(22.2)
Diarrhoea	10(22.2)
Pneumonia	7(15.6)
Anaemia	7(15.6)
Fatigue	7(15.6)
Pyrexia	7(15.6)
Neutropenia	6(13.3)
Cough	6(13.3)
Oedema peripheral	5(11.1)
Rash	5(11.1)
Cytomegalovirus infection	5(11.1)
Thrombocytopenia	5(11.1)
TEAE ≥Grade3	n (%)
Any TEAE ≥Grade3 and occurring at ≥10%	24 (53.3)
Neutropenia Pneumonia	6 (13.3)
	5 (11.1)

IRAE, All Grades	n (%)	
All Grades TRAE occurring at ≥5%	25(55.6)	
Neutropenia	5(11.1)	
Thrombocytopenia	4(8.9)	
Anaemia	3(6.7)	
Cytomegalovirus infection	3(6.7)	
Rash	3(6.7)	
Diarrhoea	4(8.9)	
Hypertriglyceridaemia	3(6.7)	
TRAE ≥Grade3	n (%)	
Any TRAE ≥Grade3 and occurring at ≥3%	13 (28.9)	
Neutropenia	5 (11.1)	
Pneumonia Rash	2 (4.4) 2 (4.4)	

Serious adverse events occurred in 42.2% of patients, with serious treatment-related adverse events in 8.9%. No treatment-related

deaths were observed

Few immune-mediated, GI, and liver tox AEs ٠ ٠

Low discontinuation rate due to AE (1/45 pt/2.2%)

lyer S. ASH. 2024, NCT05274997.

Valemetostat

- EZH2 and EZH1 catalyze the trimethylation of histone H3 at lysine 27 (H3K27me3), leading to transcriptional repression^{1,2}
- Valemetostat tosylate (valemetostat) is a novel, potent, and selective dual inhibitor of EZH2 and EZH1 that suppresses aberrant H3K27me3, thereby promoting antitumorigenic processes²⁻⁴

Baseline Demographics and Disease Characteristics

Making Cancer History®

Characteristic	PTCL (N = 133)
Median age, years (range)	69.0 (22–85)
Sex, n (%)	
Male	91 (68.4)
Female	42 (31.6)
ECOG PS score, n (%)	
0	58 (43.6)
1	65 (48.9)
2	9 (6.8)
3	1 (0.8)
Median prior lines of therapy (range)	2.0 (1–12)
1	36 (27.1)
2	36 (27.1)
3	29 (21.8)
≥ 4	32 (24.1)
Prior HCT, n (%)	35 (26.3)
Autologous	32 (24.1)
Allogeneic	5 (3.8)

Zinzani PL, et al...VALENTINE-PTCL01. Lancet Oncol. 2024

PTCL subtypes, n (%) (WHO 2016 classification; central review)	PTCL (N = 133)			
TFH phenotype				
AITL	42 (31.6)			
Nodal PTCL with TFH phenotype	8 (6.0)			
FTL	3 (2.3)			
PTCL-NOS	41 (30.8)			
ALCL				
ALK ⁺	7 (5.3)			
ALK ⁻	2 (1.5)			
MEITL	1 (0.8)			
CD8 ⁺ PCAECTCL	1 (0.8)			
PCGTL	1 (0.8)			
Other TCL ^a	13 (9.8)			
Non-TCL or undetermined ^b	6 (4.5)			
Missing ^c	8 (6.0)			

Efficacy analysis set

Common TEAEs (Occurring in ≥ 15% of Patients) and Dose Modifications

Making Cancer History®

- Cytopenias were common, and were manageable with dose modifications and/or supportive therapies such as transfusions and G-CSF
 - Thrombocytopenia was the most frequent any grade (49.6%) and grade \geq 3 (23.3%) TEAE
 - The median time to first onset of platelet count < 50×10⁹/L was 18 days from the first dose and the median time to recovery was 12 days
- 2 patients developed secondary AML and discontinued treatment

TEAEs leading to dose modifications^a (N = 133)

	Treatment discontinuation	Dose reduction	Dose interruption
Preferred term	%	%	%
Any TEAE	9.8	15.8	49.6
Thrombocyt ^b	2.3	5.3	16.5
Anemia ^c	0	3.8	9.8
COVID-19	0	1.5	8.3
Neutropenia ^d	0	2.3	5.3

Zinzani PL, et al...VALENTINE-PTCL01. Lancet Oncol. 2024

Clinical Response (BICR Assessment)

Making Cancer History®

PET-CT-based assessment

(Exploratory endpoint)

Efficacy-evaluable population (N = 119)

- Ten (8.4%) patients treated with valemetostat proceeded to allo-HCT, including 8 patients (6.7%) with a CR^a and 2 patients with an unknown response
 - The median time from first dose of valemetostat to subsequent allo-HCT was 6.9 months

CT-based assessment

(Primary endpoint)

SOQUELITINIB: Phase 1 Subject Enrollment and Patient Characteristics

Making Cancer History®

Enrollment in US, AUS, KOR and China (n=60) 31 patients enrolled at 200 mg BID

Patient Characteristics	100 mg (N=4)	200 mg (N=31)	400 mg (N=9)	600 mg (N=16)
Age (yrs.), median (range)	51 (29, 75)	60 (29, 81)	69.0 (41, 80)	63.5 (34, 84)
Gender, male N (%)	3 (75)	14 (45.2)	6 (66.7)	8 (50)
No. of prior therapies, median (range)	3.5 (2, 4)	3 (1,18)	5 (2, 15)	5 (1, 9)
Histologies				
PTCL-NOS	1	13	2	9
AITL	1	4	2	0
ALCL	1	3	0	0
CTCL Sezary	0	2	4	1
CTCL Mycoses	0	5	1	5
Other	1	4	0	1

- Good occupancy achieved at 200 mg BID and beyond
- Excellent correlation between PBMC and tissue occupancy in both LN core and skin punch samples
- Conclusion: Occupancy in PBMCs = Occupancy in Lymph nodes = Occupancy in Skin

Data: 18 May 2023

Clinical Results in Optimum Dose Cohort

Making Cancer History®

Histology

Randomized Phase 3 Trial

Emerging themes in T cell Lymphomas

- Epigenetic targeting of Tfh
- Targeting dysregulated pathways: JAK/STAT, PI3K, EZH1/2
- Targeting cytotoxic, gamma-delta and NK subtypes
- Immunotherapy: checkpoint blockade and cellular

Cytotoxic lymphomas are rare and have a high unmet need

Making Cancer History®

*Some cases are cytotoxic

ANKL: aggressive NK leukemia; EATL: enteropathy-associated T-cell lymphoma; ENKTL: extranodal NK/T-cell lymphoma; ET-CTCL: epidermotropic cytotoxic T-cell lymphoma; HSTCL: hepatosplenic T-cell lymphoma; HVLPD: Hydroa vacciniforme-like lymphoproliferative disorder; MEITL: monomorphic epitheliotropic intestinal T-cell lymphoma; PCy δ TCL: primary cutaneous y δ T-cell lymphoma;. PTCL-NOS: peripheral T-cell lymphoma, not otherwise specified; SPTCL: subcutaneous panniculitis-like Tcell lymphoma

- Cytotoxic lymphomas (CTLs) are a group of rare lymphoma subtypes that is driven by CD94 expressing cytotoxic cells of origin
- CTLs account for ~25-40% of NK/T-cell lymphomas (or 3-6% of NHL)
- No standard of care has been established for patients with CTL and few are represented on randomized studies
- Outcomes in R/R PTCL patients are poor with mOS < 6 months, and worse outcomes in R/R ENKTL patients with an mOS of ~3 months¹
- Therefore, there is a high unmet need for patients with CTLs and safe and effective therapies are needed

¹Bellei M et al. *Haematologica* 2018.

DR-01 is Novel Targeted Antibody against CD94

- DR-01 is a non-fucosylated human IgG antibody against CD94 that is selectively expressed on terminally differentiated as well as malignant cytotoxic T cells and NK cells
- Since CD94 is expressed on target and effector cells and engages Fc-gamma receptors, such as CD16a, DR-01 triggers antibody-dependent cellular cytotoxicity (ADCC), by effector cells or fratricide, resulting in rapid target cell depletion

Baseline Characteristics for CTL Patients on Dose Escalation (Part A)

Making Cancer History®

	0.3 mg/kg (N=1)	1 mg/kg (N=7)	3 mg/kg (N=5)	6 mg/kg (N=5)	10 mg/kg (N=3)	Total (N=21)
CTL Histology, n (%) PCγδTCL ET-CTCL HSTCL SPTCL ENKTL MEITL PTCL-NOS & Other*	0 1 (100) 0 0 0 0 0	2 (28.6) 0 1 (14.3) 1 (14.3) 0 3 (42.9)	0 1 (20) 0 0 1 (20) 1 (20) 2 (40)	2 (40) 0 0 0 1 (20) 2 (40)	2 (66.7) 0 1 (33.3) 0 0 0 0	6 (28.6) 2 (9.5) 1 (4.8) 1 (4.8) 2 (9.5) 2 (9.5) 7 (33.3)
Median Prior LoT (range)	8 (8-8)	5 (2-14)	5 (2-7)	3 (2-6)	4 (2-9)	4 (2-14)
Reason for Discontinuation from Last Therapy, n (%) Lack of Response Intolerance	1 (100) 0	4 (57.1) 0	1 (20) 1 (20)	2 (40) 2 (40)	2 (66.7) 0	10 (47.6) 3 (14.3)
Prior autologous or allogeneic HSCT, n(%)	0	1 (14.3)	3 (60)	0	0	4 (19)

*Other includes malignant cells expressing CD8 or CD56 and at least 1 cytotoxic marker (TIA-1, granzyme B, perforin) HSCT: hematopoietic stem cell transplant; LoT: line of therapy

Most Common Adverse Events in Safety Evaluable Patients (TEAE > 10%)

Making Cancer History®

- No DLTs were reported during dose escalation and the MTD was not reached
- Infusion-related reactions (IRR) were the most common TEAE
 - Majority of IRR events were grade 1-2 and all events were manageable with mitigation strategies including standard pre-medications and splitting the initial dose
- Only 2/54 (4%) reported AEs of viral reactivation (< Grade 3). Patients able to continue study treatment

Promising Response Rate, including CRs, in CTL Patients During Dose Escalation in Majority of Histologies

Making Cancer History®

		Dos	e Level (m	g/kg)		
	0.3 (N=1)	1 (N=6)	3 (N=4)	6 (N=5)	10 (N=3)	Total (N=19) [#]
ORR, n (%)	0	4 (67)	1 (25)	2 (40)	9	7 (37)
CR	0	3 (50)	0	0	0	3 (16)
PR	0	1 (17)	1 (25)	2 (40)	0	4 (21)
SD	0	0	1 (25)	2 (40)	1 (33)	4 (21)
PD	1 (100)	2 (33)	2 (50)	1 (20)	2 (67)	8 (42)

One unrelated AE withdrawal and one PI withdrawal without assessment *Includes cutaneous subtypes

Emerging themes in T cell Lymphomas

Making Cancer History®

- Epigenetic targeting of Tfh
- Targeting dysregulated pathways: JAK/STAT, PI3K, EZH1/2
- Targeting cytotoxic, gamma-delta and NK subtypes
- Immunotherapy: checkpoint blockade and cellular

Role of Tumor microenvironment in PTCL- ALCL

Making Cancer History®

Tse E and Kwong YL, Seminars in Cancer Biology (2015), 34:46, Mhaidly et al. Oncogenesis (2020) 9:73, Crescenzo et al., Cancer Cell, (2015) 27:516.

Investigator-initiated trial of pembrolizumab + romidepsin (HDACi) in r/r PTCL pts

Time (Months)

Making Cancer History®

- FY23 proposed correlative studies to identify predictors of response and resistance
- WES, RNAseq, and in situ CODEX multiplex profiling
- Computational Pathology: machine learning and deep learning computational pathology tools

Agbedia et al. ASH 2022, Oral Presentation

Methods

45

1

Perform WES and RNAseq of tumor samples at baseline from PTCL patients treated with pembro+romi

2

Design, develop, and optimize a 33marker CODEX antibody panel to profile tumor samples at baseline from PTCL patients treated with pembro+romi and identify biomarkers associated with clinical outcome

3

To delineate and validate the spatial attributes that define the TME components of lymphoma (L), tumor associated immune cell (TIC) and tumor associated macrophages (TAMs) in TCL using spatial point and computational pathology

Tumor & I	mmune	Functional	Stromal
T cell & turnor cell	Macrophages CD11b	Proliferation & activation Granzyme B ICOS	Epithelia Cytokeratin MUC-1
CD2	CD68	KI-67 MMP-9	Blandungerin
005	NK cells	Checknoint & inhibition	CD31 CD34
CD7	CD16	LAG-3	00010004
CD8	CD56	PD-1 PD-L1 VISTA	Lymphatics
CD25	CD57 CD30		Podoplanin
CD69	B & plasma cells	Multifunctional	and the second
CD162	CD20	β-catenin BCL-2 CD71	Extracellular matrix
CD164	CD38	EGFR HLA-DR IDO-1	Collagen IV
CD194	CD138		and the second se
FoxP3			Cytoplasm
GATA3	Granulocytes		Vimentin
MMP-12	CD15		
T-bet	Mast cell tryptase		Nuclei
p53			DRAQ5
Lymphocyt	es Dendritic cells		Hoechst
CD45	CD1a		
CD45RA	CD11c CD45RO		

Lymphoma Panel: 33 Markers

Phenotypes

		T	cells			B cells'			Macrophages'		
1	CD3e	Total T cells'	32 CD3e CD8 MCHII	MCHII CTL	62	CD19	Total B cells'	95	CD68	Macrophages	
2	CD3e_CD4_	Helper T cells' (Th)	33CD3e CD8 PD-1	CTL antigen-experienced'	63	CD20	Total Mature B cells'	96	CD68_CD163	M2_Macrophages	
3	CD3e CD8	Cytotoxic T cells' (CTL)	34CD3e CD8 PD-L1	PD-L1 CTL	64	CD19_CD20_	Total Mature B cells'	97	CD68_PD-L1	PD-L1_Macrophages	
4	CD3e BCL2	BCL2 T cells'	35CD3e CD8 CD47	CD47 CTL	65	CD19_CD47_	CD47_B cells	98	CD163_PD-L1	PD-L1_M2_Macrophages	
5	CD3e-CD57	NKT cells	36CD3e CD8 PD-1 PD-11	PD-I1 CTI antigen-experienced	66	CD20_CD47_	CD47_Mature B cells	99	CD68_CD11b	Macrophages	
6	CD3e Ki-67	'Proliferating T Cell'	37CD3e_CD4_ROBeT	Th17	67	CD19_CD58_	CD58_B cells	100	CD68_CD14	Macrophages	
7			38CD3e CD8 TIA-1	'Activated Cytotoxic T cells'	68	CD20_CD58_	CD58_Mature B cells	101	CD68_MHCII_	MHCII_Macrophages	
, Q		CD11h T cells			69	CD19_MCHII_	MHCII_B cells	102	CD68_CD163_PD-L1_	PD-L1_M2_Macrophages	
0		CDER Teelle			70	CD19_CD30_	CD30_B cells	103	CD68_CD14_PD-L1_	PD-L1_Macrophages	
9					71	CD20_MCHII_	MHCII_Mature B cells	104		PD-L1_Macrophages	
10		CD30_ICEIIS	41CD3e_CD8_CD11b		72		I otal Mature B cells	105	CD68_CD11B_CD14	Macrophages	
11		CD47_1 cells	42CD3e_CD4_CXCR3_	CXCR3_In	73		Proliferating B cells	100		PD-LI_Macrophages	
12		Double_positive_T cells'	43CD3e_CD8_CXCR3_	CXCR3_CTL	74	CD19 CD20 Ki67	Proliferating Mature B cells	107	CD172a_CD163	CD172a_M2_Macrophages	
13	CD3e_PD1_	T cells antigen-experienced'	44CD3e_CD4_CXCR5	CXCR5_CD4 T cells	75		CD30 Mature B cells	100	Endotelial ca	Ile	
14	CD3e_PD-1_PD-L1_	PDL1_T cells antigen-experienced'	45 CD3e_CD4_PD-1_ICOS_CXCR5	T follicular helper (Tfh)	70	CD20_CD30	CD30_Mature B cells	109	CD58	Endotelial cells	
15	CD3e_CD4_Foxp3_CXCR3	CXCR3_Treg	46CD3e_CD8_CXCR5	CXCR5_CD8 T cells	79		CYCR3 B cells	110	CD123	Endotelial cells	
16	CD3e_CD4_CXCR5_	CXCR5_Th	'NK_T ce	lls'	70	CD21	Total Follicular dendritic cells	111	CD123 CD58	Endotelial cells	
17	CD3e_CD4_EOMES_	EOMES_CD4 Tcells	47 CD3e_CD56	NKT cells'	80	CD19 CD21	Follicular dendritic cells		NK cells'		
18	CD3e_CD8_EOMES_	EOMES_CTL	48CD3e_CD56_CD58	CD58_NKT cells	81	MHCII CD19 CD21	Follicular dendritic cells	112	CD56 CD3eNeg	NK cells'	
19	CD3e_CD4_Foxp3_	Regulatory T cells (Treg)	49CD3e_CD56_CD47	CD47_NKT cells	82	CD21 CD11b	CD11b Follicular dendritic cells	113	CD56 CD3eNeg CD47	CD47 NK cells	
20	CD3e_CD4_Foxp3_MHCII	MCHII_Regulatory T cells (Treg)	50CD3e_CD56_CD4_	CD4_NKT cells	83	MHCII CD21	Follicular dendritic cells	114	CD56 CD3eNeg CD4	CD4_NK cells	
21	CD3e_CD4_GATA3_	Th2	51CD3e_CD56_CD8_	CD8_NKT cells	84	CD21 CD11b MHCII	Follicular dendritic cells	115	CD56 CD3eNeg CD8	CD8_NK cells	
22	CD3e_CD4_PD-1_	Helper T cells antigen-experienced'	52 CD3e_CD56_GZA	Activated NKT cells'		Myeloid cell	s'	116	CD56_CD3eNeg_GZA	Activated NKT cells'	
23	CD3e_CD8_GATA3_	GATA3 CTL	53CD3e CD56 GZB	Activated NKT cells'	85	CD11b_	Total Myeloid cells	117	CD56_CD3eNeg_GZB	Activated NKT cells'	
24	CD3e_CD4_GZMA	CD4 Cytotoxic T cells'	54CD3e CD56 TIA1	Activated NKT cells'	86	CD11b_Ki67	Proliferating Myeloid cells	118	CD56_CD3eNeg_TIA1_	Activated NKT cells'	
25	CD3e CD8 GZMA	Activated Cytotoxic T cells'	55CD3e CD56 GATA3	NKT2	87	CD11b_CD172	CD172_Myeloid cells	119	CD56_CD3eNeg_CDXCR3	Immature NK cells (iNK)	
26	CD3e CD4 GZMB	CD4_CytotoxicTcells'	56CD3e_CD56_RORgT	NKT17	88	CD123_MHCII	Myeloid dendritic cells (mDC)	120	CD56_CD3eNeg_CD11b	NK cells'	
27	CD3e CD8 GZMB	Activated Cytotoxic T cells'	57CD3e_CD56_Eoxp3	NKT-reg	89	CD123_CD14	CD14_ Dendritic cells (mDC)	121	CD56_CD3eNeg_CD58	CD58_NK cells	
28	CD3e CD4 PD-1 ICOS	T follicular beloer (Tfh)	58CD3e CD56 CXCB3	CXCR3_NKT cells	90	CD123_MHCII_CXCR3	Plasmocytoid dendritic cells (pDC)	122	CD56_CD3eNeg_EOMES	EOMES_NK cells	
20	CD3e CD4 Ki-67	Droliferating Th'	59CD3e CD56 G74 G7P	Activated NKT cells'	91	CD123_MHCII_CD172a	CD172_DC	123	CD56_CD3eNeg_CDXCR5	CXCR5_NK cells'	
29					92	CD123_MHCII_CXCR3_CD172a	CD172_DC	124	CD56_CD3eNeg_GZB_CXCR5	CXCR5_Granzyme B_NK cells'	
30				EUIVIES_INKT CEIIS	93	CD123_CD4	Plasmocytoid dendritic cells (pDC)	125	CD56_CD3eNeg_CD57	CD57_NK Cells	
- 31		IVICHII_IN	PTCD36_CD26_KIP1	Proliferating_NK1 cells	94	CD123_CD4_CD56	Plasmocytoid dendritic cells (pDC)	126	CD56_CD3eNeg_Ki67	Proliferating_NKT cells	

Making Cancer History®

Nair....Iyer. ASH 2024, Oral Presentation

CODEX analysis of the immune landscape in responders versus non-responders.

Making Cancer History®

Cell Type	Total Markers	Significant Markers	Trend	Description
T cells	46	15 (32.6%)	٢	Higher in responders
NKT cells	13	6 (46.2%)	٢	Higher in responders
B cells	24	8 (33.3%)	Θ	No significant difference
Myeloid cells	9	5 (55.6%)	♦	Higher in non- responders
Macrophages	12	8 (66.7%)	•	Higher in non- responders
Endothelial cells	3	1 (33.3%)	Θ	No significant difference

Nair....Iyer. ASH 2024, Oral Presentation

Choosing the right targets: expression of CD markers on T lineage and mature T $\alpha\beta$ cells

Gene Editing approaches for CAR-T

Making Cancer History®

Initial Allogeneic CAR-T Candidate – CTX110

CRISPR/Cas9 Allows for Precise Genome Editing

- The **CRISPR/Cas9 complex** is composed of a **single guide RNA** (sgRNA) and the **Cas9 endonuclease**
- The sgRNA binds to a specific sequence of DNA
- **Cas9 then creates a double strand DNA** (DSB) break at that precise sequence

NHEJ: non-homologous end joining HDR: homology directed recombination

Multiplex editing in one step

Iver S, et al. Lancet Oncology November 2024

Baseline characteristics

Making Cancer History®

		Baseline characte	eristics					
	Dose level 1 (n=4)	Dose level 2 (n=4)	Dose level 3 (n=5)	Dose level 4 (n=26)	All (n=39)			
Age (years)								
Median	58.0	66.0	67.0	60.5	63.0			
(IQR)	(48.0-64.0)	(52.0-69.0)	(65.0-72.0)	(47.0-68.0)	(47.0-68.0)			
Sex								
Male	3 (75.0)	2 (50.0)	2 (40.0)	11 (42.3)	18 (46.2)			
Female	1 (25.0)	2 (50.0)	3 (60.0)	15 (57.7)	21 (53.8)			
Race								
White	3 (75.0)	2 (50.0)	4 (80.0)	15 (57.7)	24 (61.5)			
Black or African American	0	1 (25.0)	1 (20.0)	6 (23.1)	8 (20.5)			
Asian	0	0	0	3 (11.5)	3 (7.7)			
Other	0	0	0	1 (3.8)	1 (2.6)			
Multiple	1 (25.0)	0	0	1 (3.8)	2 (5.1)			
Not reported	0	1 (25.0)	0	0	1 (2.6)			
Type of Lymphoma								
PTCL	2 (50.0)	1 (25.0)	2 (40.0)	17 (65.4)	22 (56.4)			
PTCL-NOS	1 (25.0)	0	0	7 (26.9)	8 (20.5)			
ALCL	0	0	0	1 (3.8)	1 (2.6)			
ATLL	1 (25.0)	1 (25.0)	1 (20.0)	6 (23.1)	9 (23.1)			
AITL	0	0	1 (20.0)	3 (11.5)	4 (10.3)			
SS or MF	2 (50.0)	3 (75.0)	3 (60.0)	9 (34.6)	17 (43.6)			
Large cell transformation	1 (50.0)	3 (100)	2 (66.7)	5 (55.6)	11 (64.7)			
Type of Prior Anticancer Therapies								
Systemic Therapy	4 (100)	4 (100)	5 (100)	26 (100)	39 (100)			
Stem Cell Transplant	1 (25.0)	0	1 (20.0)	6 (23.1)	8 (20.5)			
Number of prior lines of systemic the	rapy							
Median (IQR)	3 (2, 5)	6 (5, 7)	5 (3, 6)	4 (2, 5)	4 (2, 6)			

Iyer S, et al. Lancet Oncology November 2024

MF/SS: Response across compartments

Making Cancer History®

Parameters used for blood compartment assessment: absolute counts (C9, C15, C16, C17).

MF/SS: Global Responses

Making Cancer History®

				Patient	Response in Skin	Response in Nodes	Response in Blood	Response in Viscera	Global Response Score
				C1	SD	SD	NE	NE	SD
Global	Definition	Skin	Nodes/Blood/viscera	C2	CR	PR	NE	NE	PR
30010	Complete disappearance of			C3	SD	SD	NE	NE	SD
CR	all clinical evidence of disease	CR	All categories have CR/NI	C4	PD	PD	NE	PD	PD
PR	Regression of measurable	CR	All categories do not have a CR/NI and no category has	C5	PD	PD	NE	NE	PD
	No category has a PD, if any			C6	CR	CR	NE	NE	CR
No category has a PD, if anyPRcategory involved at baseline	, PR	No category has a PD and if any category involved at baseline, at least one has a CR or PR	C7	SD	CR	NE	NE	SD	
	at least one has a CR or PR			C8	PR	PR	NE	NE	PR
SD	Failure to attain CR, PR, or PD representative of all disease	SD	CR/NI, PR, SD in any category and no category has a PD	C9	PR	CR	PR	NE	PR
PD	Progressive disease	PD	PD in any category	C10	CR	CR	NE	NE	CR
Relapse	Recurrence of disease in prior CR	Relapse	Relapse in any category	C11	SD	PR	NE	NE	SD
				C12	SD	SD	NE	NE	SD
				C13	PR	NE	NE	NE	PR
				C14	SD	SD	NE	NE	SD
				C15	SD	SD	SD	NE	SD
				C16	SD	PR	PR	NE	SD
Olsen F. et	al. ICO May 2011			C17	PR	NE	PR	NE	PR

Iyer S, et al. Lancet Oncology November 2024

MF/SS: Response trends

Making Cancer History®

CTX-130 Allo-CD70 CAR-T-MF with LCT

Making Cancer History®

Before CTX-130 Jan 4 Before CTX-130 Jan 23, 2022

mSWAT 1/13- 84.74

Day 18 CTX-130 Feb 11, 2022

Day 28 CTX-130 Feb 21, 2022

mSWAT 2/21- 0

CTX131 Incorporates Novel Potency Edits

Making Cancer History®

Next-generation CRISPR gene-edited allogeneic CAR T chassis:

- MHC I KO: Improve persistence in the allogeneic setting and avoid need for more toxic lymphodepletion
- TGFBR2 KO: Reduce tumor microenvironment inhibition of multiple CAR T cell functions

- TCR KO: Prevent GvHD
- Regnase-1 KO: Increase functional persistence, cytokine secretion and sensitivity, and effector function
- CAR KI: Site-specific insertion into TRAC locus without using lentivirus

CTX131 incorporates a CD70-targeted CAR and knock-out of CD70

Anti-CD5 CAR-T without fratricide and with persistence

Making Cancer History®

Mamonkin, Rouce et al. Blood. 2015;126(8):983-92; Cancer Immunol Res. 2018;6(1):47-58

CD5 protein is internalized and degraded in CAR T-cells, enabling expansion

Making Cancer History®

CD5 CAR-T demonstrated significant responses in T-cell Lymphoma Responses associated with shortened manufacturing (no TKI)

Making Cancer History®

Age/ Sex	Disease Type	Dose Level	CRS	ICANS	Best Clinical Response	Mfg Process
		Original ma	anufact	uring (44%	% ORR)	
63 F	Sezary	DL1	-	-	PD	Standard
70 M	AITL	DL1	-	-	CR	Short
63 F	AITL	DL2	1	-		Short
67 F	PTCL	DL2	-	-	PD	Short
71 M	PTCL	DL2	2	2		Short
48 M	PTCL	DL2	1	-	PD	Standard
29 F	CTCL	DL3	-	-	PD	Standard
63 M	PTCL	DL3	-	-	SD	Short
49 F	ATLL	DL3	1	-		Short

CR = Complete Response PR = Partial Response SD = Stable Disease PD = Progressive Disease Hill, L. C., et al. (2023). *Blood.* https://doi.org/10.1182/blood.2023022204

Emerging themes in T cell Lymphomas

Making Cancer History®

• Pan SIRP inhibitor for LA-HLH

sHLH: A Rare, Severe Hyperinflammatory Condition With No Approved Therapies

Making Cancer History®

HLH:

- hyperactivation of CD8+ T lymphocytes and macrophages;
- proliferation, ectopic migration, and infiltration into various organs;
- hypercytokinemia with elevated levels of various cytokines, resulting in progressive organ dysfunction

Triggered by malignancy, infection, autoimmune disease, or immunotherapy/CAR-T

Characterized by a failure to terminate activated CD8⁺ T cells \rightarrow uncontrolled proliferation and activation of immune cells \rightarrow massive cytokine storm

Malignancy associated HLH (mHLH) has the worst prognosis

- ~50% mortality at 2 months¹
- **~20-30%** inpatient mortality²

Overall survival in Lymphoma-associated mHLH

¹Löfstedt A, Jädersten M, Meeths M, Henter J-I. Malignancy-associated hemophagocytic lymphohistiocytosis in Sweden: incidence, clinical characteristics, and survival. Blood 2024;143(3):233–42

²Abdelhay A, Mahmoud AA, Al Ali O, Hashem A, Orakzai A, Jamshed S. Epidemiology, characteristics, and outcomes of adult haemophagocytic lymphohistiocytosis in the USA, 2006–19: a national, retrospective cohort study. eClinicalMedicine 2023;62:102143.

ELA026 Is a First-In-Class, Clinical Stage mAb Targeting SIRPa/b/g

Making Cancer History®

Hypothesis: Targeted depletion of multiple pathogenic immune cells may rapidly control the cytokine storm in sHLH

- ELA026 is a fully human IgG1 monoclonal antibody targeting SIRP α/β on myeloid cells and SIRP γ on T lymphocytes
- Mediates ADCC and ADCP *in vitro*, with potent depletion of myeloid cells and T lymphocytes demonstrated in non-human primates

Phase 1b: Evaluate Safety and Efficacy of ELA026 in Secondary HLH

Making Cancer History®

ClinicalTrials.gov ID: NCT05416307; EudraCT Number: 2021-001387-20; sHLH: secondary hemophagocytic lymphohistiocytosis. RP3D: recommended phase 3 dose. R/R: Relapse/Refractory. TN: Treatment-Naïve

Baseline Characteristics of mHLH Patients Treated in Frontline Settings

Making Cancer History®

N	12
Age, median (range)	47 (21, 78)
Female, N (%)	4 (33)
Days from mHLH diagnosis to first dose of ELA026, median (range)	4 (0, 14)
Malignancy Trigger, N (%)	
T cell lymphoma	7 (58)
B cell lymphoma	2 (17)
Hodgkin lymphoma	1 (8)
Leukemia	2 (17)
Malignancy Status, N (%)	
Relapse/refractory	5 (42)
Newly diagnosed	7 (58)
Diagnostic and Prognostic Indicators at Baseline or Screening	
Ferritin, ng/mL, median (range)	3999 (1383, 74164)
sCD25 ¹ , pg/mL, median (range)	9239 (2356, 142612)
OHI index (+/+) ^{1,2} , N (%)	5 of 12 (42)
LDH, U/L, median (range)	385 (198, 16840)
Platelets, G/L, median (range)	33 (2, 105)
CRP, mg/L, median (range)	9 (3, 87)

Maiti A....Iyer S, ASH 2024

Most Frequent Adverse Events, All Dosed Patients, N=22

Making Cancer History®

	A	ll eve	ents		Related events				
Adverse event	- (0/)		Grade	9		Grade			
	n (%)	1/2	2 3/4 5		n (%)	1/2	3/4	5	
Hypotension	9 (41)	7	2	0	2 (9)	2	0	0	
Pyrexia	9 (41)	6	3	0	2 (9)	2	0	0	
Hyperkalaemia	8 (36)	8	0	0	0	0	0	0	
Sepsis	8 (36)	0	6	2	0	0	0	0	
Dyspnoea	7 (32)	6	1	0	1 (5)	1	0	0	
Epistaxis	6 (27)	4	2	0	0	0	0	0	
Hypoalbuminaemia	6 (27)	6	0	0	0	0	0	0	
Peripheral swelling	6 (27)	6	0	0	0	0	0	0	
Thrombocytopenia	6 (27)	0	6	0	2 (9)	0	2	0	
Abdominal pain	5 (23)	4	1	0	0	0	0	0	
Chills	5 (23)	5	0	0	2 (9)	2	0	0	
Febrile neutropenia	5 (23)	0	5	0	0	0	0	0	
Hyperphosphataemia	5 (23)	5	0	0	0	0	0	0	
Hyponatraemia	5 (23)	4	1	0	0	0	0	0	
Hypophosphataemia	5 (23)	5	0	0	0	0	0	0	
Neutropenia	5 (23)	0	5	0	2 (9)	0	2	0	
Pneumonia	5 (23)	0	5	0	0	0	0	0	

	Α	ll eve	ents		Related events				
Adverse event		(Grade	2		Grade			
	n (%)	1/2	3/4	5	n (%)	1/2	3/4	5	
Alanine aminotransferase increased	4 (18)	3	1	0	0	0	0	0	
Arthralgia	4 (18)	2	2	0	0	0	0	0	
Blood alkaline phosphatase increased	4 (18)	2	2	0	0	0	0	0	
Blood bilirubin increased	4 (18)	2	2	0	0	0	0	0	
Constipation	4 (18)	4	0	0	0	0	0	0	
Cough	4 (18)	4	0	0	0	0	0	0	
Diarrhoea	4 (18)	3	1	0	1 (5)	1	0	0	
Hyperglycemia	4 (18)	3	1	0	0	0	0	0	
Hyperhidrosis	4 (18)	4	0	0	0	0	0	0	
Hypomagnesaemia	4 (18)	4	0	0	0	0	0	0	
Infusion related reaction	4 (18)	1	3	0	2 (9)	0	2	0	
Multiple organ dysfunction syndrome	4 (18)	0	2	2	0	0	0	0	
Pain in extremity	4 (18)	1	3	0	0	0	0	0	
Stomatitis	4 (18)	3	1	0	0	0	0	0	
Tachypnoea	4 (18)	4	0	0	0	0	0	0	

High Response Rate by Week 4 in mHLH Treated in Frontline Settings

Making Cancer History®

Response Criteria	Patient 2	Patient 3	Patient 5	Patient 8	Patient 13	Patient 15	Patient 16	Patient 17	Patient 19	Patient 20	Patient 21	Patient 22
1. Afebrile?	•	•	•	•	•	•	•	•	•	•	0	•
2. Normal spleen?	Ο			Ο	Ο	•	•	0	•	Ο	•	Ο
3. ANC and platelet criteria met?	•	0	Ο	Ο	Ο	Ο	Ο	0	0	0	•	Ο
4. Ferritin criterion met?	0	0	Ο	Ο	•	Ο	٠	0		٠	•	Ο
5. D-dimer and/or fibrinogen criteria met?	•	•	•	•	•	•	•	•	•	•	•	•
6. Normal neuro exam and CSF?	•	•	•	•	•	•	•	•	•	•	•	٠
7. No sustained worsening of sCD25?	•	•	•	•	Ο	•	•	•	•	•	•	•
Overall response	PR	PR	PR	PR	PR	PR	mCR	PR	PR	mCR	PR	PR

• Criterion met • O At least 50% improvement • O Criterion not met [blank] Missing data or not interpretable

Modified HLH-2004 response criteria adapted from (Locatelli 2020): Complete response (CR): Criteria 1-7 met; Modified CR (mCR): Criteria 1, 4, 5, 6, 7 met; Partial response (PR): Any 3 criteria met; HLH improvement (HI): \geq 50% change or improvement from baseline in \geq 3 criteria; Overall response is HI or better, without progression of any other clinical or laboratory data. No response (NR): Not meeting CR, mCR, PR or HI; ANC: absolute neutrophil count; CSF: cerebral spinal fluid; sCD25: soluble CD25.

Maiti A....lyer S, ASH 2024

Maximum Biomarker Reduction by Week 4 in mHLH Treated in Frontline Settings

Making Cancer History®

All patients experienced one or more biomarker reductions of >50%

Maiti A....Iyer S, ASH 2024

Improved Survival in mHLH Treated with ELA026 in Frontline Settings:

Making Cancer History®

*Using modified HLH-2004 response criteria adapted from (Locatelli 2020)

DLBCL: diffuse large B-cell lymphoma; AITL: angioimmunoblastic T-cell lymphoma; PTCL-NOS: peripheral T-cell lymphoma, not otherwise specified; NK: natural killer; ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; CR: complete response; mCR: modified complete response; PR: partial response; HI: HLH improvement; OS: overall survival; EOT: end of treatment; EOS: end of study.

¹Löfstedt A, Jädersten M, Meeths M, Henter J-I. Malignancy-associated hemophagocytic lymphohistiocytosis in Sweden: incidence, clinical characteristics, and survival. Blood 2024;143(3):233–42

Maiti A....Iyer S, ASH 2024

Emerging themes in T cell Lymphomas

Making Cancer History®

- Epigenetic targeting of Tfh
- Targeting dysregulated pathways: JAK/STAT, PI3K, EZH1/2, ITK
- Targeting cytotoxic, gamma-delta and NK subtypes
- Immunotherapy: checkpoint blockade and cellular
- Pan SIRP inhibitor for LA-HLH

Iyer S- unpublished-Modified from pivotal studies

Conclusions: Treatment Landscape

Making Cancer History®

FDA-Approved Agents

- •Brentuximab vedotin (CD30+ disease): Superior efficacy (13+ months PFS, 69% RR) •Other approved agents with modest efficacy:
 - Romidepsin (4 months PFS, 25% RR)- off market
 - Pralatrexate (3.5 months PFS, 29% RR)
 - Belinostat (1.6 months PFS, 26% RR)

Phase III Study Agents: Promising Alternatives

- •All exceed 4-month PFS threshold with improved response rates:
 - **Duvelisib:** 3.4 months, 48.5% RR
 - Valemetostat: 5.4 months PFS, 43.7% RR
 - Linperlisib: 5.5 months PFS, 45% RR
 - Azacytidine: 5.2 months PFS, 48% RR
 - Golidocitinib: 5.6 months PFS, 44% RR
 - Soquelitinib: 5.5 months PFS, 40% RR
- Cellular Therapy: Allo-CAR-T anti CD70-52% RR and Auto-CAR-T CD5
- Combinations: Romidepsin+Duvelisib, Romidepsin+ Aza
- •Off-protocol: Ruxolitinib (3 months, 25% RR)
- •Conventional: chemotherapy (2.8 months, 43.2% RR)
- New agents demonstrate 30-40% longer PFS and ~70% higher response rates compared to most approved agents (except Brentuximab)

Therapeutic Matching based on Cell of origin (COO) and Tumor microenvironment (TME)

Modified from Marchi, E. and O'Connor, O.A. 2020 CA A Cancer J Clin, 70: 47-70. Vega F, EXABS-TCL-052.2020
Mature T cell Lymphoma Care Pathways

Making Cancer History®

ADOPTIVE CELL THERAPY GLIOBLASTOMA CANCER GENOMICS LABORATORY ECLIPSE APOLLO B-CELL LYMPHOMA BREAST CANCER INSTITUTE FOR APPLIED CANCER SCIENCE LUNG CANCER MDS AND AML MELANOMA ORBIT OVAI APOLLO PANCREATIC CANCER PROST IMMUNOTHERAPY B-CELL LYMPHOMA TRANSLATIONAL RESEARCH ACCELERATOR ADOPTIVE CELL THERAPY APOLLO B-CELL LYMPHOMA BREAST CANCER OMICS TRACTION CANCER PREVENTION AND CONTROL RECTAL CANCER ECLIPSE GLIOBLASTOMA HIGH-RISK MULTIPLE MYELOMA HPV-RELATED CANCERS IMMUNOTHERAPY INSTITUTE FOR APPLIED CANCER SCIENCE BREAST CANCER SAND AML MELANOMA PROSTATE CANCER PROTEOMICS TRACTION TRANSLATIONAL RESEARCH ACCELERATOR ADD CANCER GENOMICS LABORATORY LLYMPHOMA BREAST CANCER CANCER (CANCER PANCREATIC CANCER ORY CANCER PREVENTION AND CONTROL COLORECTAL CANCER ECLIPSE GLIOBLASTOMA HIGH-RISK MULTIPLE MYELOMA HPV-RELATED CANCERS IMMUN CANCER PREVENTION AND CONTROL CELERATOR ADOPTIVE CELL THERAPY AF OVARIAN CANCER PANCREATIC CANCER PROSTATE CANCER PROTEOMICS TRACTION TRANSLATIONAL RESEA CLL CANCER MDS AND AML MELANOMA ORBIT COLORECTAL CANCER I YMPHOMA BREAST CANCER CANCER GENOMICS LABORATORY CANCER PREVENTION AND CONTROL CLL COLORECTAL CANCER ECLIPSE GLIOBLASTOMA HPV-RELATED CA INSTITUTE FOR APPLIED CANCER SCIENCE LUNG CANCER MDS AND AML MELANOMA ORBIT OVARIAN CANCER PANCREATIC CANCER PR ECLIPSE ICER PROTEOMICS TRACTION TRANSLAT NOTHERAPY GLIOBLASTOMA CANCER ECLIPSE GLIO ADOPTIVE CELL THERAPY APOLLO B-CELL LYMPHOMA BREAST CANCER CANCER GENOMICS LABORATORY CANCER PREVENTION AND CONTROL ULTIPLE MYELOMA HPV-RELATED CANCERS IMMUNOTHERAPY INSTITUTE FOR APPLIED CANCER SCIENCE LUNG CANCER MDS AN HIGH-RISK MULTIPLE MYELOMA AN CANCER PANCREATIC CANCER PROST HPV-RELATED CANCERS FION AND CONTROL ACCELERATOR ADOPTIVE CELL THERAPY APOLLO B-CELL LYMPHOMA BREAST CANCER CANCER GENOMICS LABC OMICS IMMUNOTHERAPY JNG CANCER MDS AND AML MELANOMA RECTAL CANCER FCI IPSF HIGH-RISK MULTIPLE MYELOMA HPV-RELATED CANCERS IMMUNOTHERAPY PROTEOMICS TRACTION TRANSLATIONAL RESEARCH ACCELERATOR ADOPTIVE CELL THERAPY APOLLO B-CE INSTITUTE FOR APPLIED CANCER SCIENCE CANCER PANCREATIC CANCER

MOON SHOTS

Proposed T/NK-Cell Malignancy Moon Shots

Sattva Neelapu, M.D. Department of Lymphoma and Myeloma

Swaminathan P. lyer, M.D. Department of Lymphoma and Myeloma

Tapan Kadia, M.D.

B-CELL LYMPHOMA BREAST CANCER CANCER GENOMICS LABORATORY CANCER PREVENTION LUNG CANCER COLORECTAL CANCER ECLIPSE GLIO INSTITUTE FOR APPLIED CANCER SCIENCE LUNG CANCER MDS AND AML MELANOMA ORBIT OVAR MDS AND AML ICREATIC CANCER PROST LERATOR ADOPTIVE CELL THERAPY APOLLO B-CELL LYMPHOMA BREAST CANCER CANCER GE MELANOMA CANCER PREVENTION AND CONTROL ATORY K MULTIPLE MYELOMA HPV-RELATED CANCERS IMMUNOTHERAPY INSTITUTE FOR APPLIED CANCER SCIENCE ORBIT MDS AND AML MELANOMA OVARIAN CANCER LLYMPHOMA BREAST CANCER CANCER (PROTEOMICS TRACTION TRANSLATIONAL RESEARCH ACCELERATOR ADOPTIVE CELL THE PANCREATIC CANCER OR APPLIED CANCER ORECTAL CANCER ECLIPSE GLIOBLASTOMA HIGH-RISK MULTIPLE MYELOMA HPV-RELATED CANCERS IMMU. N CANCER PANCREATIC CANCER PROSTATE CANCER PROTEOMICS TRACTION TRANS PROSTATE CANCER ADOPTIVE CELL THERAPY AF PROTEOMICS CANCER PREVENTION AND CONTROL CLL COLORECTAL CANCER ECLIPSE GLIOBLASTOMA HIGH IYELOMA HPV-RELATED CA CE LUNG CANCER MDS AND AML MELANOMA ORBIT TRANSLATIONAL RESEARCH ACCELERATOR & TRACTION ICER PROTEOMICS TRACTION TRANSLAT

T Cell Lymphoma Group

Making Cancer History®

Lymphoma:

- Dr.Christopher Flowers •
- Dr.Sattva Neelapu
- Dr.Loretta Nastoupil
- Dr.Jason Westin
- Dr.Felipe Samaniego
- Dr.Nathan Fowler
- Dr.Luis Malpica
- Dr.Ranjit Nair
- Dr.Luis Fayad
- Dr.Dai Chihara
- Dr.Madeleine Duvic
- Dr.Auris Huen
- Dr.Bouthina Dabaja
- Dr.Jillian Gunther
- Dr.Chitra Hosing
- Dr.Yago Nieto
- Dr.Samer Srour
- Dr.Meghan Heberton

- Dr.Jeff Medeiros
- Dr.Francisco Vega
- Dr.Roberto Miranda
- Dr.Carlos Torres-Cabala
- Dr.Mark Clemens
- Dr.Kelly Hunt
- Dr.Jessie Xu
- Dr.Susan Wu
- Dr.Luis Fayad
- Dr. Chelsea Pinnix
- Dr.Chi Ok
- Dr.MJ You
- Dr.John Stewart
- Dr.Keyur Patel
- Dr.Cara Haymaker

٠

٠

Dr.Hun Ju Lee

Dr.Preetesh Jain

- Dr.Ayse Koksoy
- Dr.Rengenath
- Dr.Daniela Duenas
- Dr.Jingjing Liu
- Dr. John Zhang

- Dr. Michael Wang Dr. Deepa Sampath
- Dr.Sairah Ahmed Dr.Eric Davis
 - Dr.Simrit Parmar

